Improved parallel model combination techniques with split Gaussian mixtures for speech recognition under noisy conditions

نویسندگان

  • Jeih-Weih Hung
  • Jia-Lin Shen
  • Lin-Shan Lee
چکیده

The parallel model combination (PMC) technique has been very successful and frequently used to improve the performance of a speech recognition system under noisy environments. In this approach it is assumed that the log spectrum of speech signals is Gaussian-distributed, which is not always valid especially when the number of mixtures in the HMM’s is few. In this paper, a simple approach is proposed to improve the PMC method by splitting the mixtures before the domain transformation process in PMC is performed, and merging the mixtures back to the original number after the PMC processes are completed. Preliminary experimental results show that the increased number of mixtures during the PMC processes can in fact provide significant improvements over the original PMC method in terms of the recognition accuracies, especially when the SNR is low.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Improved parallel model combination based on better domain transformation for speech recognition under noisy environments

The parallel model combination (PMC) technique has been shown to achieve very good performance for speech recognition under noisy conditions. However, there still exist some problems based on the PMC formula. In this paper, we first investigated these problems and some modifications on the transformation process of PMC were proposed. Experimental results show that this modified PMC can provide ...

متن کامل

Residual noise compensation for robust speech recognition in nonstationary noise

We present a model-based noise compensation algorithm for robust speech recognition in nonstationary noisy environments. The effect of noise is split into a stationary part, compensated by parallel model combination, and a time varying residual. The evolution of residual noise parameters is represented by a set of state space models. The state space models are updated by Kalman prediction and t...

متن کامل

Improved robustness for speech recognition under noisy conditions using correlated parallel model combination

The parallel model combination (PMC) technique has been shown to achieve very good performance for speech recognition under noisy conditions. In this approach, the speech signal and the noise are assumed uncorrelated during modeling. In this paper, a new correlated PMC is proposed by properly estimating and modeling the nonzero correlation between the speech signal and the noise. Preliminary ex...

متن کامل

Automatic Segmentation of Speech Recorded inUnknown Noisy Channel

This paper investigates the problem of automatic segmentation of speech recorded in noisy channel corrupted environments. Using an HMM-based speech segmentation algorithm, speech enhancement and parameter compensation techniques previously proposed for robust speech recognition are evaluated and compared for improved segmentation in colored noise. Speech enhancement algorithms considered includ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999